Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Fang Li, Ya-Qing Feng,* Hu Xiao-Fen and Xu Mian

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
Ixf7212@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.065$
$w R$ factor $=0.099$
Data-to-parameter ratio $=14.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4,11-Bis(4-chlorophenyl)-3,10-bis(2,6-dichlorophenyl)-1,8-dioxa-2,9-diaza-dispiro[4.1.4.4]pentadeca-2,9-dien-6-one

The title compound, $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}$, which was synthesized by the [3+2]-cycloaddition of 2,6 -dichlorobenzonitrile oxide and 2,7-bis(4-chlorobenzylidene)cycloheptanone, contains two independent molecules in the asymmetric unit. Three rings are linked by two spiro-C atoms. The cycloheptanone ring adopts a chair conformation and the two five-membered isoxazoline rings have envelope conformations.

Comment

Spiro-compounds represent an important class of naturally occurring substances, characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are important processes for the construction of spiro-compounds (Caramella \& Grunanger, 1984). The structure of the title compound, (I), is reported here.

(I)

The molecular structure of (I) is illustrated in Fig. 1. (I) contains three spiro-linked rings, viz. a cycloheptanone ring and two isoxazoline rings. The seven-membered cycloheptanone ring has a chair conformation. The two isoxazoline rings are attached to this central ring through spiro-C atoms; this is different from the similar structure in the literature $(\mathrm{Li}$ et al., 2003), which has approximate C_{2} symmetry. Attached to the isoxazoline rings are 4 -chlorophenyl and 2,6 -dichlorophenyl substituents. The two isoxazoline rings $(A$ and $B)$ are non-planar, with envelope conformations. O2/N1/C8/C9 (in ring A) and $\mathrm{O} 3 / \mathrm{N} 2 / \mathrm{C} 10 / \mathrm{C} 11$ (in ring B) form nearly planar arrangements. The spiro-atom C2 lies 0.440 (3) \AA from the $\mathrm{O} 2 / \mathrm{N} 1 / \mathrm{C} 8 / \mathrm{C} 9$ plane in ring A and C7 lies 0.194 (3) \AA from the $\mathrm{O} 3 / \mathrm{N} 2 / \mathrm{C} 10 / \mathrm{C} 11$ plane in ring B, forming the flaps of the envelopes. The dihedral angle between the $\mathrm{C} 9 / \mathrm{C} 2 / \mathrm{O} 2$ plane and the $\mathrm{O} 2 / \mathrm{N} 1 / \mathrm{C} 8 / \mathrm{C} 9$ mean plane is $28.6(4)^{\circ}$, and that between the $\mathrm{C} 11 / \mathrm{C} 7 / \mathrm{O} 3$ plane and the $\mathrm{O} 3 / \mathrm{N} 2 / \mathrm{C} 10 / \mathrm{C} 11$ mean plane is $12.2(4)^{\circ}$, similar to $12.0(4)$ and $26.7(4)^{\circ}$ reported in the literature (Li et al., 2003). Similar values are obtained for the second molecule in the asymmetric unit.

The dihedral angles between the two substituted phenyl rings on rings A and B are 90.4 (3) and 104.2 (3) ${ }^{\circ}$, respectively. The dihedral angle between the two isoxazoline ring envelope

Received 7 April 2003
Accepted 14 April 2003
Online 30 April 2003

Figure 1
The asymmetric unit of (I), with 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
Least-squeares superposition of the two independent molecules in the asymmetric unit.
flaps ($\mathrm{C} 9 / \mathrm{C} 2 / \mathrm{O} 2$ and $\mathrm{C} 11 / \mathrm{C} 7 / \mathrm{O} 3$), which form the spiro junctions with the central ring, is $86.7(3)^{\circ}$. Similar values are obtained for the second molecule in the asymmetric unit.

The differences between the two independent molecules in the asymmetric unit are shown in Fig. 2 and Table 1.

Experimental

A mixture of 2,6-dichlorobenzonitrile oxide (3 mmol) and 2,7-bis(4chlorobenzylidene)cycloheptanone (1.5 mmol) in dry benzene $(30 \mathrm{ml})$ was heated under reflux for 40 h . After evaporation of the solvent, the residue was separated by column chromatography (silica gel, petroleum ether-ethyl acetate $=5: 1$) to give the title compound (I). M.p. $535-536 \mathrm{~K}$; IR (KBr): $1718(\mathrm{C}=\mathrm{O}), 1598,1582(\mathrm{C}=\mathrm{N}$, $\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): $1.10-1.61(4 \mathrm{H}, m), 1.71-2.22$ $(4 \mathrm{H}, m), 5.68(1 \mathrm{H}, s), 5.91(1 \mathrm{H}, s), 7.15-7.35(14 \mathrm{H}, m) ; 20 \mathrm{mg}$ of (I) was dissolved in 15 ml chloroform, and the solution was kept at room temperature for 10 d , to give colorless single crystals of (I) by evaporation.

Crystal data
$\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=733.26$
Monoclinic, C2/c
$a=33.510$ (9) А
$b=12.419$ (5) \AA
$c=32.946$ (9) \AA
$\beta=95.152(8)^{\circ}$
$V=13655$ (8) \AA^{3}
$Z=16$
$D_{x}=1.427 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 914
reflections
$\theta=3.3-23.7^{\circ}$
$\mu=0.54 \mathrm{~mm}^{-1}$
$\mu=0.54 \mathrm{~mm}$
$T=293$ (2) K
Plate, colorless
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.835, T_{\text {max }}=0.947$
27390 measured reflections

Refinement

Refinement on F^{2}
11983 independent reflections
5317 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.099$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-39 \rightarrow 39$
$k=-9 \rightarrow 14$
$l=-39 \rightarrow 35$

H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.084 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.099$
$S=0.97$
11983 reflections
829 parameters
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\max }=-0.36 \mathrm{e}^{\mathrm{min}}{ }^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{N} 1-\mathrm{O} 2$	$1.423(4)$	$\mathrm{N} 3-\mathrm{O} 5$	$1.418(3)$
$\mathrm{N} 2-\mathrm{O} 3$	$1.400(4)$	$\mathrm{N} 4-\mathrm{O} 6$	$1.409(4)$
$\mathrm{N} 2-\mathrm{O} 3-\mathrm{C} 7$	$109.5(3)$	$\mathrm{N} 4-\mathrm{O} 6-\mathrm{C} 42$	$108.7(3)$
$\mathrm{N} 2-\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 11$	$-12.4(4)$	$\mathrm{N} 4-\mathrm{O} 6-\mathrm{C} 42-\mathrm{C} 46$	$-22.3(3)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$-3.3(5)$	$\mathrm{O} 5-\mathrm{N} 3-\mathrm{C} 43-\mathrm{C} 47$	$179.1(3)$
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 24$	$177.9(3)$	$\mathrm{O} 5-\mathrm{N} 3-\mathrm{C} 43-\mathrm{C} 44$	$-2.8(4)$
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11$	$-0.5(5)$	$\mathrm{O} 6-\mathrm{N} 4-\mathrm{C} 45-\mathrm{C} 59$	$177.0(3)$
$\mathrm{N} 4-\mathrm{O} 6-\mathrm{C} 42-\mathrm{C} 41$	$-148.7(3)$	$\mathrm{O} 6-\mathrm{N} 4-\mathrm{C} 45-\mathrm{C} 46$	$3.0(5)$

H atoms were refined as riding, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 or 0.97 Å.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT and SHELXTL (Bruker, 1998); program(s) used to solve structure: $\operatorname{SHELXTL}$ (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (1998). SADABS, SMART (Version 5.10), SAINT (Version 4.0) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Caramella, P. \& Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.
James, D. M., Kunze, H. B. \& Faulkner, D. J. (1991). J. Nat. Prod. 54, 11371140.

Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H. Ishibashi, M., Sasaki, T. \& Mikamiy, Y. (1991). Tetrahedron, 47, 6617-6622.
Li, X. F., Feng, Y. Q., Zhuang, J. P. \& Hu, X. F. (2003). Acta Cryst. E59, o247o249.

